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Remember: Normal Distribution 
 Distribution over 
 Density function with parameters            (mean) and    

             (variance).              
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Remember: Multivariate Normal Distribution 
 Distribution over vectors  
 Density function with parameters 

 
 
 
 
 
 

 Example D=2: density, sample from distribution 
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Statistics & Machine Learning 

 Machine learning: tightly related to inductive statistics. 
 Two areas in Statistics:  

 Descriptive Statistics: description and examination of the 
properties of data. 

 
 
 

 Inductive Statistics: What conclusions can be drawn 
from data about the underlying reality?   

Mean values 
Difference between 
Populations 

Variances 

Model building 
Explanations for  
observations 

Relationships and 
patterns in the data 
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Frequentist vs. Bayesian Probabilities 
 Frequentist probabilities 

 Describe the possibility of an occurrence of an intrinsically 
stochastic event (e.g., a coin toss). 

 Defined as limits of relative frequencies of possible 
outcomes in a repeatable experiment 

“If one throws a fair coin 1000 times, 
it will land on heads about 500 times“  

“In 1 gram of Potassium-40, around 260,000 nuclei  
decay per second“  
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Frequentist vs. Bayesian Probabilities 
 Bayesian “subjective“ probabilities 

 Here, the reason for uncertainty is attributed to a lack of 
information. 

 How likely is it that suspect X killed the victim?  
 New Information (e.g., finger prints) can change these 

subjective probabilities. 
 

 Bayesian view is more important in machine learning 
 Frequentist and Bayesian perspectives are 

mathematically equivalent; in Bayesian statistics, 
probabilities are just used to model different things (lack of 
information).  
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Bayesian Statistics 
 1702-1761 
 “An essay towards solving a 

problem in the doctrine of 
chances“, published in 1764. 
 

 The work of Bayes laid the 
foundations for inductive Statistics. 

 “Bayesian Probabilities“ offer an important perspective 
on uncertainty and probability. 
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Bayesian Probability in Machine Learning 
 Model building: find an explanation for observations. 

 
 What is the “most likely“ model? Trade-off between 

 Prior knowledge (a priori distribution over models), 
 Evidence (data, observations). 

 
 Bayesian Perspective:  

 Evidence (data) changes the “subjective“ probability for 
models (explanation), 

 A posteriori  model probability, MAP hypothesis. 

9 
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Bayesian Model of Learning 

 “Nature” conducts random experiment, determines 𝜃∗. 
 System with parameter 𝜃∗ generates observations 𝐲 = 𝑓𝜃∗(𝐗). 
 Bayesian inference inverts this process: 

 Given these assumptions about how 𝐲 is generated, 
 Given the observed values of 𝐲 for input matrix 𝐗, 
 What is the most likely true value of 𝜃? 
 What is the most likely value 𝑦∗ for a new input 𝐱∗? 
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Nature randomly determines  
𝜃∗ according to 𝑃 𝜃  

System parameter 𝜃∗ 

Observations 𝐲 for input 𝐗 
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Bayesian Model of Learning 

 
 

 Bayes‘ equation: 

𝑃 𝜃 𝐗, 𝐲 =
𝑃 𝐲 𝐗,𝜃 𝑃(𝜃)

𝑃(𝐲|𝐗)
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Observations 𝐲 for input 𝐗 

A priori (“prior”) probability  
of nature choosing θ 

Likelihood of observing 𝐲|𝐗  
when model parameter is 𝜃. 

A posteriori (“posterior”) probability that θ is  
the correct parameter given observations 𝐲|𝐗. 

Probability of 
observing 𝐲|𝐗; 
independent of 𝜃. 

Nature randomly determines  
𝜃∗ according to 𝑃 𝜃  

System parameter 𝜃∗ 
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Bayesian Model of Learning 
 Maximum-likelihood (ML) model: 

 𝜃𝑀𝑀 = arg max
𝜃

𝑃(𝐲|𝐗,𝜃). 

 Maximum-a-positeriori (MAP) model: 
 𝜃𝑀𝐴𝐴 = arg max

𝜃
𝑃(𝜃|𝐲,𝐗) 
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Likelihood 

A posteriori (“posterior”) 
distribution 
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Bayesian Model of Learning 
 Maximum-likelihood (ML) model: 

 𝜃𝑀𝑀 = arg max
𝜃

𝑃(𝐲|𝐗,𝜃). 

 Maximum-a-positeriori (MAP) model: 

 𝜃𝑀𝐴𝐴 = arg max
𝜃

𝑃(𝜃|𝐲,𝐗) = arg max
𝜃

𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

 
= arg max

𝜃
𝑃 𝐲 𝐗,𝜃 𝑃 𝜃  

 
 

13 

Posterior ∝ likelihood x prior 
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Bayesian Model of Learning 
 Maximum-likelihood (ML) model: 

 𝜃𝑀𝑀 = arg max
𝜃

𝑃(𝐲|𝐗,𝜃). 

 Maximum-a-positeriori (MAP) model: 

 𝜃𝑀𝐴𝐴 = arg max
𝜃

𝑃(𝜃|𝐲,𝐗) = arg max
𝜃

𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

 
= arg max

𝜃
𝑃 𝐲 𝐗,𝜃 𝑃 𝜃  

 
 Most likely value 𝐲∗ for new input 𝐱∗ (Bayes-optimal decision): 

 𝐲∗ = arg max
𝑦

𝑃(𝑦|𝐱∗,𝐲,𝐗) 
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Bayesian Model of Learning 
 Maximum-likelihood (ML) model: 

 𝜃𝑀𝑀 = arg max
𝜃

𝑃(𝐲|𝐗,𝜃). 

 Maximum-a-positeriori (MAP) model: 

 𝜃𝑀𝐴𝐴 = arg max
𝜃

𝑃(𝜃|𝐲,𝐗) = arg max
𝜃

𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

 
= arg max

𝜃
𝑃 𝐲 𝐗,𝜃 𝑃 𝜃  

 
 Most likely value 𝐲∗ for new input 𝐱∗ (Bayes-optimal decision): 

 𝐲∗ = arg max
𝑦

𝑃(𝑦|𝐱∗,𝐲,𝐗) 

 𝑃 𝑦∗ 𝐱∗,𝐲,𝐗 = ∫ 𝑃 𝑦∗,𝜃 𝐱∗,𝐲,𝐗 𝑑𝜃 
= ∫ 𝑃 𝑦∗ 𝐱∗,𝜃 𝑃 𝜃 𝐲,𝐗 𝑑𝜃 
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“Bayesian model averaging”. Often computationally  
infeasible, but has a closed-form solution in some cases. 

Predictive  
distribution 
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Linear Regression Models 

 Training data: 

 𝐗 =
𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

 

 𝐲 =
𝑦1
⋮
𝑦𝑛
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 Model 
  𝑓𝛉 ∶ 𝑋 → 𝑌  

 
 𝑓𝛉 𝐱 = 𝐱T𝛉 
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Probabilistic Linear Regression 
 Assumption 1: Nature generates parameter 𝛉∗ of a linear 

function 𝑓𝛉∗ 𝐱 = 𝐱T𝛉∗ according to 𝑝(𝛉). 
 
 
 
 
 
 
 

𝑓𝜃∗ 𝐱𝑖 = 𝐱𝑖T𝛉∗ 

𝑓𝜃∗ 𝐱𝑖  

𝐱𝑖 
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Probabilistic Linear Regression 
 Assumption 1: Nature generates parameter 𝛉∗ of a linear 

function 𝑓𝛉∗ 𝐱 = 𝐱T𝛉∗ according to 𝑝(𝛉). 
 Assumption 2: Given inputs 𝐗, nature generates outputs 𝐲: 

 𝑦𝑖 = 𝑓𝛉∗ 𝐱𝑖 + 𝜖𝑖 with 𝜖𝑖~𝑁(𝜖|0,𝜎2). 
 𝑝 𝑦𝑖 𝐱𝑖 ,𝛉∗ = 𝑁(𝑦𝑖|𝐱𝑖T𝛉∗,𝜎2) 

 
 
 
 
 
 
 

 In reality, we have 𝐲,𝐗 and want to make inferences about 𝛉. 

𝑓𝜃∗ 𝐱𝑖 = 𝐱𝑖T𝛉∗ 

𝑓𝜃∗ 𝐱𝑖  𝑝 𝑦𝑖 𝐱𝑖 ,𝛉∗ = 𝑁 𝑦𝑖 𝐱𝑖T𝛉∗,𝜎2  
⇒ 𝑝 𝐲 𝐗T,𝛉∗ = 𝑁 𝐲 𝐗𝛉∗,𝜎2𝐈  

𝐱𝑖 
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Maximum Likelihood for Linear Regression 
 Maximum-likelihood (ML) model: 

𝛉𝑀𝑀 = arg max
𝛉

𝑃(𝐲|𝐗,𝛉) = arg max
𝛉

�𝑁(𝑦𝑖|𝐱𝑖T𝛉,𝜎2)
𝑛

𝑖=1

  

20 

Training instances are independent 
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Maximum Likelihood for Linear Regression 
 Maximum-likelihood (ML) model: 

𝛉𝑀𝑀 = arg max
𝛉

𝑃(𝐲|𝐗,𝛉) = arg max
𝛉

�𝑁(𝑦𝑖|𝐱𝑖T𝛉,𝜎2)
𝑛

𝑖=1

 

= arg max
𝛉

�
1
2𝜋𝜎2

exp −
1

2𝜎2
𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1
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Maximum Likelihood for Linear Regression 
 Maximum-likelihood (ML) model: 

𝛉𝑀𝑀 = arg max
𝛉

𝑃(𝐲|𝐗,𝛉) = arg max
𝛉

�𝑁(𝑦𝑖|𝐱𝑖T𝛉,𝜎2)
𝑛

𝑖=1

 

= arg max
𝛉

�
1
2𝜋𝜎2

exp −
1

2𝜎2
𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

 

 
 
 

 Log is a monononic transformation: 
 arg max

𝜃
𝑃(𝐲|𝐗,𝛉) = arg max

𝜃
log𝑃(𝐲|𝐗,𝛉)  

 Also constant terms (constant in 𝛉) can be dropped. 

22 
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Maximum Likelihood for Linear Regression 
 Maximum-likelihood (ML) model: 

𝛉𝑀𝑀 = arg max
𝛉

𝑃(𝐲|𝐗,𝛉) = arg max
𝛉

�𝑁(𝑦𝑖|𝐱𝑖T𝛉,𝜎2)
𝑛

𝑖=1

 

= arg max
𝛉

�
1
2𝜋𝜎2

exp −
1

2𝜎2
𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

= arg min
𝛉
� 𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

 

 
 Log is a monononic transformation: 

 arg max
𝜃

𝑃(𝐲|𝐗,𝛉) = arg max
𝜃

log𝑃(𝐲|𝐗,𝛉)  

 Also constant terms (constant in 𝛉) can be dropped 

23 

log∏𝑒𝑥 = ∑𝑥 
Unregularized linear  
regression with  
squared loss 
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Maximum Likelihood for Linear Regression 
 Maximum-likelihood (ML) model: 

𝛉𝑀𝑀 = arg min
𝛉
� 𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

 

 Known as least-squares method in statistics.  
 

 Setting the derivative to zero gives closed-form solution: 
𝛉𝑀𝑀 = 𝐗T𝐗 −1𝐗T𝐲 

 
 Inversion of 𝐗T𝐗 is numerically unstable. 
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Maximum Likelihood for Linear Regression 
 The maximum-likelihood model is only based on the data, it is 

independent of any prior knowledge or domain assumptions. 
 Calculating the maximum-likelihood model is numerically 

unstable.  
 Regularized least squares works much better in practice.  
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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MAP for Linear Regression 
 Maximum-a-positeriori (MAP) model: 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

𝑃(𝛉|𝐲,𝐗) = arg max
𝛉

𝐴 𝐲 𝐗,𝛉 𝐴 𝛉
𝐴 𝐲 𝐗
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MAP for Linear Regression 
 Maximum-a-positeriori (MAP) model: 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

𝑃(𝛉|𝐲,𝐗) = arg max
𝛉

𝐴 𝐲 𝐗,𝛉 𝐴 𝛉
𝐴 𝐲 𝐗

 
= arg max

𝛉
𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  

= arg max
𝛉

log 𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  

= arg max
𝛉

� log𝑃 𝑦𝑖 𝐱𝑖 ,𝛉 + log𝑃 𝛉
𝑛

𝑖=1

 

= arg max
𝛉

� log𝑁 𝑦𝑖 𝐱𝑖T𝛉,𝜎2 + log𝑃 𝛉
𝑛

𝑖=1

 

= ⋯ 
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Training instances  
are independent 
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MAP for Linear Regression: Prior 

 Nature generates parameter 𝛉∗ of linear model 
𝑓𝛉∗ 𝐱 = 𝐱T𝛉∗ according to 𝑝(𝛉). 

 For convenience, assume 𝑝 𝛉 = N(𝛉|𝟎,𝜎𝑝2𝐈). 
 
 
 
 
 
 

 

2  controls strength of priorpσ ∈

22
2

/

2 )

        

( ) ( | ,

1 1exp | |
2 2m

p
m

p

p

p σ

π σσ

=

 
−  


=



θ θ 0 I

θ



2θ

( )p θ

0

0

1θ
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MAP for Linear Regression 
 Maximum-a-positeriori (MAP) model: 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

∑ log𝑁 𝑦𝑖 𝐱𝑖T𝛉,𝜎2 + log𝑃 𝛉𝑛
𝑖=1  

= arg max
𝛉

� log
1
2𝜋𝜎2

−
1

2𝜎2
𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

 

           + log 1

2𝜋
𝑚
2 𝜎𝑝

− 1
2𝜎𝑝2

𝛉T𝛉 
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All terms that are constant in 
𝜃 can be dropped.  
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MAP for Linear Regression 
 Maximum-a-positeriori (MAP) model: 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

∑ log𝑁 𝑦𝑖 𝐱𝑖T𝛉 + log𝑃 𝛉𝑛
𝑖=1  

= arg max
𝛉

� log
1
2𝜋𝜎2

−
1

2𝜎2
𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

 

           + log 1

2𝜋
𝑚
2 𝜎𝑝

− 1
2𝜎𝑝2

𝛉T𝛉 

= arg min
𝛉
�

1
2𝜎2

𝑦𝑖 − 𝐱𝑖T𝛉
2

𝑛

𝑖=1

+
1

2𝜎𝑝2
𝛉T𝛉 

= arg min
𝛉
� 𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

−
𝜎2

𝜎𝑝2�
𝜆

𝛉T𝛉 
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ℓ2-regularized linear regression with 
squared loss (ridge regression). 
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MAP for Linear Regression 
 Maximum-a-positeriori (MAP) model: 

 𝛉𝑀𝐴𝐴 = arg min
𝛉
∑ 𝑦𝑖 − 𝐱𝑖T𝛉

2𝑛
𝑖=1 − 𝜎2

𝜎𝑝2⏟
𝜆

𝛉T𝛉 

 
 Same optimization criterion as ridge regression. 
 Analytic solution (see lecture on ridge regression): 

 𝛉𝑀𝐴𝐴 = 𝐗T𝐗 + 𝜎2

𝜎𝑝2
𝐈
−1
𝐗T𝐲 
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Posterior for Linear Regression 
 Posterior distribution of 𝛉 given 𝐲,𝐗: 

 𝑃 𝛉 𝐲,𝐗 = 𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

= 1
𝑍
𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  
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Posterior for Linear Regression 
 Posterior distribution of 𝛉 given 𝐲,𝐗: 

 𝑃 𝛉 𝐲,𝐗 = 𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

= 1
𝑍
𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  

=
1
𝑍
𝑁 𝐲 𝐗T𝛉,𝜎2𝐈 𝑁 𝛉 𝟎,𝜎𝑝2 𝐈  
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= �
1

2𝜋𝜎2
exp −

1
2𝜎2

𝑦𝑖 − 𝐱𝑖T𝛉 2
𝑛

𝑖=1

 
The normal distribution is the  
conjugate of itself. Therefore  
𝑁 ⋅ ⋅,⋅ 𝑁 ⋅ ⋅,⋅ = 𝑁 ⋅ ⋅,⋅  
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Posterior for Linear Regression 
 Posterior distribution of 𝛉 given 𝐲,𝐗: 

 𝑃 𝛉 𝐲,𝐗 = 𝐴 𝐲 𝐗,𝜃 𝐴 𝜃
𝐴 𝐲 𝐗

= 1
𝑍
𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  

=
1
𝑍
𝑁 𝐲 𝐗T𝛉,𝜎2𝐈 𝑁 𝛉 𝟎,𝜎𝑝2 𝐈  

= 𝑁(𝛉|𝛉�,𝐀−1) 

 With 𝛉� = 𝐗T𝐗 + 𝜎2

𝜎𝑝2
𝐈
−1
𝐗T𝒚 

 And 𝐀−1 = 𝜎−2𝐗T𝐗 + 𝜎𝑝−2𝐈. 
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Mean value of posterior: 𝛉𝑀𝐴𝐴 
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Example MAP solution regression 
 Training data: 

 
 
 
 
 

 Matrix notation (adding constant attribute): 
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1

2
3 ,
0

 
 =  
 
 

x 2

4
3 ,
2

 
 =  
 
 

x 3

0
1 ,
2

 
 =  
 
 

x

1 2y = 2 3y = 3 4y =

1 2 3 0
1 4 3 2
1 0 1 2

 
 =  
 
 

X
2
3
4

 
 =  
 
 

y
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Example MAP solution regression 
 Choose 

 Variance of prior: 
 Noise parameter: 

 
 Compute: 
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1pσ =
0.5σ =

1
T T1 0 0 0

21 2 3 0 1 2 3 0 1 2 3 0
0 1 0 0

1 4 3 2 1 4 3 2 0.25 1 4 3 2 3
0 0 1 0

1 0 1 2 1 0 1 2 1 0 1 2 4
0 0 0 1

−
  

        
        = + ⋅                            

θ

2
T

2
1 T( )

p

σ
σ

−= +X Iθ X X y

 0.7975
-0.5598
 0.7543
 1.1217

 
 
 
 
 
 

≈
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Example MAP solution regression 
 
 
 

 Predictions of model      on the training data:  

39 

 0.7975
1.94081 2 3 0

-0.5598
1 4 3 2 3.0646

 0.7543
1 0 1 2 3.7952

 1.1217

ˆ

 
   
   = =          

=


 

y θX

θ
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Posterior and Regularized Loss Function 
 MAP model: 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

𝑃(𝛉|𝐲,𝐗) = arg max
𝛉

𝐴 𝐲 𝐗,𝛉 𝐴 𝛉
𝐴 𝐲 𝐗

 
= arg max

𝛉
𝑃 𝐲 𝐗,𝛉 𝑃 𝛉  

= arg max
𝛉

log𝑃 𝐲 𝐗,𝛉 + log𝑃 𝛉  

= arg max
𝛉

� log𝑃 𝑦𝑖 𝐱𝑖 ,𝛉
𝑛

𝑖=1

+ log𝑃 𝛉  

= arg min
𝛉
� 𝑦𝑖 − 𝐱𝑖T𝛉

2
𝑛

𝑖=1

+
𝜎2

𝜎𝑝2
𝛉𝐓𝛉 
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Likelihood ≈ loss function Prior ≈ regularizer 
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Sequential Learning 
 Training examples arrive sequentially. 
 Each training example (𝐱𝑖 ,𝑦𝑖) changes prior 𝑝𝑖−1(𝛉) into 

posterior 𝑝𝑖−1(𝛉|𝑦𝑖 , 𝐱𝑖) which becomes the new prior 𝑝𝑖 𝛉  

 𝑃 𝛉 𝐲,𝐗 = 1
𝑍
𝑃0 𝛉 𝑃 𝐲 𝐗,𝛉  

=
1
𝑍
𝑃0 𝛉 �𝑃(𝑦𝑖|𝐱𝑖 ,𝛉)

𝑛

𝑖=𝟏

 

=
1
𝑍
𝑃0 𝛉 𝑃 𝑦1 𝐱1,𝛉

𝐴1(𝛉)
𝑃 𝑦2 𝐱2,𝛉

𝐴2(𝛉)

𝑃 𝑦3 𝐱3,𝛉

𝐴3(𝛉)

…𝑃(𝑦𝑛|𝐱𝑛,𝛉) 
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Example: Sequential Learning 
[from Chris Bishop, Pattern Recognition and Machine Learning] 

42 

Sequential update: 

1θ

0θ

𝑓𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 (one-dimensional regression) 

𝑃0(𝛉) Sample from 𝑃0(𝛉) 

𝑃0(𝛉) 
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Example: Sequential Learning 
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Sequential update: 

1θ

0θ

𝑓𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 (one-dimensional regression) 

𝑃0(𝛉) Instance 𝑥1,𝑦1 

𝑃0(𝛉) 

Likelihood 𝑃(𝑦1|𝑥1,𝛉) 

1θ

0θ
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Example: Sequential Learning 
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Sequential update: 

1θ

0θ

𝑓𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 (one-dimensional regression) 

𝑃1(𝛉) 

𝑃1 𝛉 ∝ 𝑃0(𝛉)𝑃(𝑦1|𝑥1,𝛉) 

Likelihood 𝑃(𝑦1|𝑥1,𝛉) 

1θ

0θ

Sample from 𝑃1(𝛉) 
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Example: Sequential Learning 
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Sequential update: 

1θ

0θ

𝑓𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 (one-dimensional regression) 

𝑃2(𝛉) 

𝑃2 𝛉 ∝ 𝑃1(𝛉)𝑃(𝑦2|𝑥2,𝛉) 

Likelihood 𝑃(𝑦2|𝑥2,𝛉) 

1θ

0θ

Sample from 𝑃2(𝛉) 
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Example: Sequential Learning 
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Sequential update: 

1θ

0θ

𝑓𝜃 𝑥 = 𝜃0 + 𝜃1𝑥 (one-dimensional regression) 

𝑃𝑛(𝛉) 

𝑃𝑛 𝛉 ∝ 𝑃𝑛−1(𝛉)𝑃(𝑦𝑛|𝑥𝑛,𝛉) 

Likelihood 𝑃(𝑦𝑛|𝑥𝑛,𝛉) 

1θ

0θ

Sample from 𝑃𝑛(𝛉) 
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Learning and Prediction 
 So far, we have always separated learning from prediction. 
 Learning:  

 𝛉∗ = arg max
𝛉

𝑅� 𝐲,𝐗,𝛉 + Ω(𝛉) 

 Prediction: 
 𝑦∗ = 𝑓𝛉∗(𝐱∗) 

 
 For instance, in MAP linear regression, learning is  

 𝛉𝑀𝐴𝐴 = arg max
𝜃

𝑃(𝛉|𝐲,𝐗). 

 And prediction is 
 𝑦∗ = 𝛉𝑀𝐴𝐴𝑇 𝐱∗. 
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Learning and Prediction 
 So far, we have always separated learning from prediction. 
 And there are good reasons to do this: 

 Learning can require processing massive amounts of 
training data which can take a long time. 

 Predictions may have to be made in real time. 
 

 However, sometimes, when relatively few data are available 
and an accurate prediction is worth waiting for, one can 
directly search for the best possible prediction: 
 𝐲∗ = arg max

𝑦
𝑃(𝑦|𝐱∗,𝐲,𝐗) 

 Most likely 𝐲∗ for new input 𝐱∗ given training data 𝐲,𝐗. 
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Bayes-Optimal Prediction 
 Bayes-optimal decision: most likely value 𝐲∗ for new input 𝐱∗ 

 𝑦∗ = arg max
𝑦

𝑃(𝑦|𝐱∗,𝐲,𝐗) 

 Predictive distribution for new input 𝐱∗ given training data: 
 𝑃 𝑦 𝐱∗, 𝐲,𝐗 = ∫ 𝑃 𝑦,𝛉 𝐱∗,𝐲,𝐗 𝑑𝛉 

= ∫ 𝑃 𝑦 𝛉, 𝐱∗, 𝐲,𝐗 𝑃 𝛉 𝐱∗,𝐲,𝐗 d𝛉 
= ∫ 𝑃 𝑦 𝛉, 𝐱∗ 𝑃 𝛉 𝐲,𝐗 d𝛉 

 
 
 

 Bayes-optimal decision is made by a weighted sum over all 
values of the model parameters. 

 In general, there is no single model 𝛉∗ in the model space that 
always makes the Bayes-optimal decision. 
 50 

Sum rule 

Product rule 

Bayesian model  
averaging 

Independence assumptions from  
model data generation process 
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Bayes-Optimal Prediction 
 Bayes-optimal decision is made by a weighted sum over all 

model parameters: 
 𝑃 𝑦 𝐱∗, 𝐲,𝐗 = ∫ 𝑃 𝑦 𝐱∗,𝛉 𝑃 𝛉 𝐲,𝐗 𝑑𝛉 

 
 The prediction of the MAP model is only the prediction made 

by the single most likely model 𝛉𝑀𝐴𝐴. 
 Predictive distribution 𝑃(𝑦|𝐱∗,𝛉𝑀𝐴𝐴). 
 Most likely prediction 𝑓𝜃𝑀𝑀𝑀 𝐱∗ = arg max

𝑦
𝑃(𝑦|𝐱∗,𝛉𝑀𝐴𝐴). 

 
 The MAP model 𝛉𝑀𝐴𝐴 is an approximaton of this weighted 

sum by its element with the highest weight.  
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Bayes-Optimal Prediction 
 Bayes-optimal decision is made by a weighted sum over all 

model parameters: 
 𝑃 𝑦 𝐱∗, 𝐲,𝐗 = ∫ 𝑃 𝑦 𝐱∗,𝛉 𝑃 𝛉 𝐲,𝐗 𝑑𝛉 

 
 Integration over the space of all model parameters is not 

generally possible. 
 In some cases, there is a closed-form solution. 
 In other cases, approximate numerical integration may be 

possible. 
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Predictive Distribution for Linear Regression 
 Predictive distribution for linear regression 

 𝑃 𝑦 𝐱∗, 𝐲,𝐗 = ∫ 𝑃 𝑦 𝐱∗,𝛉 𝑃 𝛉 𝐲,𝐗 𝑑𝛉 
= ∫ 𝑁 𝑦 𝐱∗,𝛉 𝑁 𝛉 𝛉�,𝐀−1 𝑑𝛉 
= 𝑵(𝑦|𝛉�T𝐱∗,𝜎2 + 𝐱∗T𝐀−1𝐱∗) 

 With 𝛉� = 𝐗T𝐗 + 𝜎2

𝜎𝑝2
𝐈
−1
𝐗T𝒚 

 And 𝐀−1 = 𝜎−2𝐗T𝐗 + 𝜎𝑝−2𝐈. 
 Bayes-optimal prediction: 

 𝑦∗ = arg max
𝑦

𝑃(𝑦|𝐱∗,𝐲,𝐗) = 𝛉�T𝐱∗ 
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Predictive Distribution: Confidence Band 
 Bayesian regression not only yields prediction                ,  but a 

distribution over y und therefore a confidence band. 

* = Ty x θ

x

* = Ty x θ

( )2 1| , −+T Ty Aσ x xθx

e.g. 95% confidence 
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Linear Classification 

56 

 Decision function: 
 𝑓𝛉 𝐱 = 𝐱T𝛉 

 Predictive distribution 
 𝑃 𝑦|𝐱,𝛉 = 𝜎(𝐱T𝛉) 

 Linear classifier: 
 𝑦𝛉 𝐱 = arg max

𝑦
𝑃 𝑦|𝐱,𝛉  

 𝑦𝛉: 
 
 
 



 Training data: 
 

 𝐗 =
𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

 

 𝐲 =
𝑦1
⋮
𝑦𝑛
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Linear Classification: Predictive Distribution 
 For binary classification, 𝑦 ∈ {−1, +1} 
 Predictive distribution given parameters 𝛉 of linear model: 

 𝑃 𝑦 = +1|𝐱,𝛉 = 𝜎 𝐱T𝛉 = 1
1+e−𝐱T𝛉

 

 𝑃 𝑦 = −1|𝐱,𝛉 = 1 − 𝑃 𝑦 = +1|𝐱,𝛉  
 Sigmoid function maps −∞, +∞ → [0,1]. 
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Logistic Regression 
 For binary classification, 𝑦 ∈ {−1, +1} 
 Predictive distribution given parameters 𝛉 of linear model: 

 𝑃 𝑦 = +1|𝐱,𝛉 = 𝜎 𝐱T𝛉 = 1
1+e−𝐱T𝛉

 

 𝑃 𝑦 = −1|𝐱,𝛉 = 1 − 1
1+e−𝐱T𝛉

= 1
1+e𝐱T𝛉

 

 Written jointly for both classes: 

 𝑃 𝑦|𝐱,𝛉 = 𝜎 𝑦𝐱T𝛉 = 1
1+e−𝑦𝐱T𝛉

 

 Classification function: 
 𝑦𝛉 𝐱 = arg max

𝑦
𝑃 𝑦|𝐱,𝛉  

 Called “logistic regression” even though it is a classification 
model. 
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Logistic Regression 
 Decision boundary: 𝑃 𝑦 = +1|𝐱,𝛉 = 𝑃 𝑦 = −1|𝐱,𝛉 = 0.5. 

0.5 = 𝜎 𝐱T𝛉 =
1

1 + e−𝐱T𝛉
 

⇔ 1 = e−𝐱T𝛉 
⇔ 0 = 𝐱T𝛉 

 Decision boundary is a hyperplane in input space.  
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T 0=x θ
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Logistic Regression 

 For multi-class classification: 𝛉 =
𝛉1
⋮
𝛉𝑘

 

 Generalize sigmoid function to softmax function: 

 𝑃 𝑦|𝐱,𝛉 = e𝐱
T𝛉𝑦

∑ e
𝐱T𝛉𝑦′

𝑦′

 

 Classification function: 
 𝑦𝛉 𝐱 = arg max

𝑦
𝑃 𝑦|𝐱,𝛉  

 Called multi-class “logistic regression” even though it is a 
classification model. 

 
 
 

60 

Normalizer ensures that  

�𝑃 𝑦 𝐱,𝛉 = 1
𝑦
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Logistic Regression: ML Model 
 Maximum-likelihood model: 

 𝛉𝑀𝑀 = arg max
𝛉

𝑃 𝐲 𝐗,𝛉  

= argmax
𝛉

�
1

1 + e−𝑦𝑖𝐱𝑖T𝛉

𝑛

𝑖=1

 

= argmin
𝛉
�− log

1

1 + e−𝑦𝑖𝐱𝑖T𝛉

𝑛

𝑖=1

 

= argmin
𝛉
� log 1 + e−𝑦𝑖𝐱𝑖

T𝛉
𝑛

𝑖=1

 

 No analytic solution; numeric optimization, for instance, using 
(stochastic) gradient descent.  
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Logistic Regression: ML Model 
 Maximum-likelihood model: 

 𝛉𝑀𝑀 = argmin
𝛉
∑ log 1 + e−𝑦𝑖𝐱𝑖

T𝛉𝑛
𝑖=1  

 Gradient: 


𝜕
𝜕𝛉
∑ log 1 + e−𝑦𝑖𝐱𝑖

T𝛉𝑛
𝑖=1  

= �
𝜕

𝜕 1 + e−𝑦𝑖𝐱𝑖T𝛉
log 1 + e−𝑦𝑖𝐱𝑖

T𝛉 𝜕
𝜕 −𝑦𝑖𝐱𝑖T𝛉

1 + e−𝑦𝑖𝐱𝑖
T𝛉 𝜕

𝜕𝛉
−𝑦𝑖𝐱𝑖T𝛉  

𝑛

𝑖=1

= �
1

1 + e−𝑦𝑖𝐱𝑖T𝛉
e−𝑦𝑖𝐱𝑖

T𝛉 −𝑦𝑖𝐱𝑖T  
𝑛

𝑖=1

= �−𝑦𝑖𝐱𝑖T
e−𝑦𝑖𝐱𝑖

T𝛉

1 + e−𝑦𝑖𝐱𝑖T𝛉

𝑛

𝑖=1

= �−𝑦𝑖𝐱𝑖T
1

1 + e𝑦𝑖𝐱𝑖T𝛉
 

𝑛

𝑖=1

 

= �𝑦𝑖𝐱𝑖 1 − 𝜎 𝑦𝑖𝐱𝑖T𝛉  
𝑛

𝑖=1
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Logistic Regression: MAP Model 
 Maximum-a-posteriori model with prior 𝑃 𝛉 = 𝑁(𝛉|𝟎,𝜎2𝐈): 

 𝛉𝑀𝐴𝐴 = arg max
𝛉

𝑃 𝐲 𝐗,𝛉 𝑃(𝛉) 

= argmax
𝛉

�
1

1 + e−𝑦𝑖𝐱𝑖T𝛉

𝑛

𝑖=1

𝑁(𝛉|𝟎,𝜎2𝐈) 

= argmin
𝛉
�− log

1

1 + e−𝑦𝑖𝐱𝑖T𝛉

𝑛

𝑖=1

− log𝑁(𝛉|𝟎,𝜎2𝐈) 

= argmin
𝛉
� log 1 + e−𝑦𝑖𝐱𝑖

T𝛉
𝑛

𝑖=1

+
1

2𝜎2
𝛉T𝛉 

 No analytic solution; numeric optimization, for instance, using 
(stochastic) gradient descent.  
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Logistic Regression: MAP Model 
 Maximum-a-posteriori model with prior 𝑃 𝛉 = 𝑁(𝛉|𝟎,𝜎2𝐈): 

 𝛉𝑀𝐴𝐴 = argmin
𝛉
∑ log 1 + e−𝑦𝑖𝐱𝑖

T𝛉𝑛
𝑖=1 + 1

2𝜎𝑝2
𝛉T𝛉 

 Gradient: 


𝜕
𝜕𝛉

∑ log 1 + e−𝑦𝑖𝐱𝑖
T𝛉𝑛

𝑖=1 + 1
2𝜎𝑝2

𝛉T𝛉  

= 𝑦𝑖𝐱𝑖 1 − 𝜎 𝑦𝑖𝐱𝑖T𝛉 +
1

2𝜎𝑝2
𝛉 

66 



Intelligent D
ata A

nalysis 

Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Bayes-Optimal Prediction for Classification 
 Predictive distribution given the data 

 𝑃 𝑦 𝐱∗, 𝐲,𝐗 = ∫ 𝑃 𝑦 𝛉, 𝐱∗ 𝑃 𝛉 𝐲,𝐗 d𝛉 

= ∫
1

1 + e−𝑦𝐱∗T𝛉
𝑁 𝛉 𝟎,𝜎2𝐈 𝑑𝛉 

 No closed-form solution for logistic regression. 
 Possible to approximate by sampling from the posterior. 
 Standard approximation: use only MAP model instead of 

integrating over model space.  
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Overview 
 Basic concepts of Bayesian learning 
 Linear regression: 

 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Posterior distribution over models, 
 Bayesian prediction, predictive distribution, 

 Linear classification (logistic regression): 
 Predictive distribution, 
 Maximum-likelihood model, 
 Maximum-a-posteriori model, 
 Bayesian Prediction. 

 Nonlinear models: Gaussian processes. 
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Nonlinear Regression 
 Limitation of model discussed so far: only linear 

dependency between 𝐱 and 𝑓𝛉(𝐱).  
 
 

 
 
 
 
 
 

 Now: nonlinear models. 
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Linear model Nonlinear model 
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Feature Mappings and Kernels 
 Use mapping 𝜙 to embed instances 𝐱 ∈ 𝑋 in higher-

dimensional feature space. 
 Find linear model in higher-dimensional space, corresponds to 

non-linear model in input space 𝑋. 
 Representer theorem:  

 Model 𝑓𝛉∗ 𝐱 = 𝛉∗T𝜙(𝐱) 

 Has a representation 𝑓𝛂∗ 𝐱 = ∑ 𝛼𝑖∗ 𝜙 𝐱𝑖 T𝜙 𝐱
=𝑘(𝐱𝑖,𝐱)

𝑛
𝑖=1  

 Feature mapping 𝜙(𝐱) does not have to be computed; only 
kernel function 𝑘(𝐱𝑖 , 𝐱) is evaluated.  

 Feature mapping 𝜙(𝐱) can therefore be high- or even infinite-
dimensional. 
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Generalized Linear Regression (Finite-Dimensional Case) 

 Assumption 1: Nature generates parameter 𝛉∗ of a linear 
function 𝑓𝛉∗ 𝐱 = 𝜙(𝐱)T𝛉∗ according to 𝑝 𝛉 = 𝑁(𝛉|𝟎,𝜎𝑝2𝐈). 

 Assumption 2: Inputs are 𝐗 with feature representation 𝚽; line 
𝑖 of 𝚽 contains row vector 𝜙 𝐱𝑖 T. Nature generates outputs 𝐲: 
 𝑦𝑖 = 𝑓𝛉∗ 𝐱𝑖 + 𝜖𝑖 with 𝜖𝑖~𝑁(𝜖|0,𝜎2). 
 𝑝 𝑦𝑖 𝐱𝑖 ,𝛉∗ = 𝑁(𝑦𝑖|𝜙 𝐱𝑖 T𝛉∗,𝜎2) 

 
 
 
 
 
 
 

𝑓𝛉∗ 𝐱𝑖 = 𝜙(𝐱𝑖)T𝛉∗ 

𝑓𝜃∗ 𝐱𝑖  𝑝 𝑦𝑖 𝐱𝑖 ,𝛉∗ = 𝑁 𝑦𝑖 𝜙 𝐱𝑖 T𝛉∗,𝜎2  
⇒ 𝑝 𝐲 𝐗T,𝛉∗ = 𝑁 𝐲 𝚽𝛉∗,𝜎2𝐈  

𝐱𝑖 
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Generalized Linear Regression 
 Generalized linear model: 

 𝑓𝛉 𝐱 = 𝜙(𝐱)T𝛉 
 𝐲 = 𝚽𝛉 

 Parameter 𝛉 governed by normal distribution 𝑁(𝛉|𝟎,𝜎𝐩2𝐈). 
 Therefore output vector 𝐲 is also normally distributed.  

 Mean value E 𝐲 = 𝐸 𝚽𝛉 = 𝚽𝐸 𝛉 = 𝟎. 
 Covariance E 𝐲𝐲T = 𝚽𝐸 𝛉𝛉T 𝚽T = 𝜎𝑝2𝚽𝚽T = 𝜎𝑝2𝐊. 
 With 𝐾𝑖𝑖 = 𝜙 𝐱𝑖 T𝜙 𝐱𝑖 = 𝑘(𝐱𝑖 , 𝐱𝑖). 

 

 Remember: 𝚽𝚽T =
− 𝜙 𝐱1 −

…
− 𝜙 𝐱𝑛 −

| |
𝜙 𝐱1 ⋮ 𝜙 𝐱𝑛

| |
= 𝐊 
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Generalized Linear Regression (General Case) 

 Data generation assumptions: 
 Given inputs 𝐗, nature generates target values 𝐲� ∼
𝑁(𝐲�|0,𝜎𝑝2𝐊). 

 Then, nature generates observations 𝑦𝑖 = 𝐲�𝑖 + 𝜖𝑖 with 
noise 𝜖𝑖~𝑁(𝜖|0,𝜎2). 

 
 Bayesdian inference: determine predictive distribution 

𝑃 𝐲∗ 𝐱∗,𝐲,𝐗  for new test instance.  
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Reminder: Linear Regression 
 Bayes-optimal prediction: 

 𝑦∗ = arg max
𝑦

𝑃(𝑦|𝐱∗,𝐲,𝐗) = 𝛉�T𝐱∗ 

 With 𝛉� = 𝐗T𝐗 + 𝜎2

𝜎𝑝2
𝐈
−1
𝐗T𝒚. 

 
 Number of parameters 𝜃𝑖 = number of attributes in 𝐱. 
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Generalized Linear Regression 
 Mean value of predictive distribution 𝑃 𝐲∗ 𝐱∗,𝐲,𝐗  has the form  

 𝑦∗ = ∑ 𝛼�𝑖𝑘(𝐱𝑖 , 𝐱∗)𝑛
𝑖=1  

 With 𝛂� = 𝚽𝚽T + 𝜎2

𝜎𝑝2
𝐈
−1
𝒚 = 𝐊 + 𝜎2

𝜎𝑝2
𝐈
−1
𝒚. 

 
 Number of parameters 𝛼𝑖 = number of training instances.  

76 



Intelligent D
ata A

nalysis 

Example nonlinear regression 
 Example for nonlinear regression 

 Generating nonlinear data by 
 
 

 Nonlinear kernel 
 𝑘 𝑥, 𝑥′ = exp(−𝜃 𝑥 − 𝑥′ ) 

 
 How does the predictive distribution  and the posterior over 

models look like? 
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Predictive distribution 
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N=1 

N=25 

N=2 

N=4 

sin(2 )y xπ=
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Models sampled from posterior 
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Summary 
 Linear regression: 

 Maximum-likelihood model arg max𝛉 𝑃(𝐲 |𝐗,𝛉), 
 Maximum-a-posteriori model arg max

𝛉
𝑃(𝛉|𝐲,𝐗), 

 Posterior distribution over models 𝑃(𝛉|𝐲,𝐗), 
 Bayesian prediction, predictive distribution 

arg max𝑦 𝑃(𝐲∗|𝐱∗,𝐲,𝐗). 
 Linear classification (logistic regression): 

 Predictive distribution 𝑃(𝐲∗|𝐱∗,𝛉), 
 Maximum-likelihood model arg max

𝛉
𝑃(𝐲|𝐗,𝛉), 

 Maximum-a-posteriori model arg max
𝛉

𝑃(𝛉|𝐲,𝐗), 

 Bayesian Prediction arg max
𝑦

𝑃(𝐲|𝐱∗,𝐲,𝐗). 

 Nonlinear models: Gaussian processes. 
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