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Remember: Normal Distribution

s Distribution over xeR.

= Density function with parameters <R (mean) and
o’ eR (variance).

Nz, o%) Density of normal distribution

A N (@lh0%) = s o 352~}

N (x|, 0%) > 0

/ N (z|u,0°) do =1




Remember: Multivariate Normal Distribution

= Distribution over vectors xeRP.
= Density function with parameters peR”, X eR">®.

mean vector covariance matrix ]

1 1 Ty-1
N1 2) = s szenn| 5 () E )

s Example D=2: density, sample from distribution
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Overview

= Basic concepts of Bayesian learning

= Linear regression:
Maximume-likelihood model,
Maximum-a-posteriori model,
Posterior distribution over models,
Bayesian prediction, predictive distribution,

m Linear classification (logistic regression):
Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.

=  Nonlinear models: Gaussian processes.



Statistics & Machine Learning

= Machine learning: tightly related to inductive statistics.

= WO areas In Statistics:

Descriptive Statistics: description and examination of the
properties of data.

Variances Difference between
Mean values Populations

Inductive Statistics: What conclusions can be drawn
from data about the underlying reality?

Model building

Explanations for Relationships and
observations patterns in the data



Frequentist vs. Bayesian Probabilities

= Frequentist probabilities

Describe the possibility of an occurrence of an intrinsically
stochastic event (e.g., a coin toss).

Defined as limits of relative frequencies of possible
outcomes in a repeatable experiment

“If one throws a fair coin 1000 times,
it will land on heads about 500 times**

“In 1 gram of Potassium-40, around 260,000 nuclei
decay per second*



Frequentist vs. Bayesian Probabilities

= Bayesian “subjective” probabilities

Here, the reason for uncertainty is attributed to a lack of
Information.
How likely is it that suspect X killed the victim?

New Information (e.g., finger prints) can change these
subjective probabilities.

= Bayesian view is more important in machine learning

s Frequentist and Bayesian perspectives are
mathematically equivalent; in Bayesian statistics,
probabilities are just used to model different things (lack of
Information).



Bayesian Statistics

s 1702-1761

= “An essay towards solving a
problem in the doctrine of
chances", published in 1764.

= The work of Bayes laid the
foundations for inductive Statistics.

= “Bayesian Probabilities* offer an important perspective
on uncertainty and probability.



Bayesian Probability in Machine Learning
= Model building: find an explanation for observations.

= What is the “most likely“ model? Trade-off between
Prior knowledge (a priori distribution over models),
Evidence (data, observations).

= Bayesian Perspective:

Evidence (data) changes the “subjective” probability for
models (explanation),

A posteriori model probability, MAP hypothesis.



Bayesian Model of Learning

!

System parameter 8* «——

Observations y for input X

Nature randomly determines
0" according to P(6)

“Nature” conducts random experiment, determines 6.
s System with parameter 8" generates observations y = fg+(X).
= Bayesian inference inverts this process:
Given these assumptions about how y is generated,
Given the observed values of y for input matrix X,
What is the most likely true value of 67?
What is the most likely value y* for a new input x*?
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Bayesian Model of Learning

Nature randomly determines
0" according to P(6)

System parameter 8* «——

!

Observations y for input X

Likelihood of observing y|X A priori (“prior”) probability
when model parameter is 6. of nature choosing 6
= Bayes' equation: \/ ,// -
P(y|X, 8)P(6) Probability of
P(OIX,y) = ' observing y|X;

/‘ P(y|X) independent of 4.

A posteriori (“posterior”) probability that 0 is
the correct parameter given observations y|X.
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Bayesian Model of Learning

=  Maximume-likelihood (ML) model:
Oy, = argmax P(y[X, 6). —Likelihood

=  Maximum-a-positeriori (MAP) model:

_ A posteriori (“posterior”)
Omap = argmax P(Oly, X) % distribution
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Bayesian Model of Learning

=  Maximum-likelihood (ML) model:
Oy = argméaxP(y|X,8).
=  Maximum-a-positeriori (MAP) model:

P(y|X,6)P(6)
P(y|X)

Orap = argméixP(my, X) = arg max
= argmax P(y|X,6)P(0)

Posterior « likelihood x prior
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Bayesian Model of Learning

=  Maximum-likelihood (ML) model:
Oy = argm@axP(y|X,8).
=  Maximum-a-positeriori (MAP) model:

P(y|X,6)P(6)
P(y|X)

Orap = argmgxP(8|y, X) = arg max
= argmax P(y|X,6)P(0)

= Most likely value y* for new input x* (Bayes-optimal decision):
y* = argmax P (y|x",y, X)
y
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Bayesian Model of Learning

=  Maximum-likelihood (ML) model:

0y = arg mgle(y|X, 0).

=  Maximum-a-positeriori (MAP) model:

Orap = argmgle(my, X) = arg max

P(y|X,6)P(6)
P(y|X)

= argmax P(y|X,6)P(0)

= Most likely value y* for new input x* (Bayes-optimal decision):

y* = argmax P(y|x",y, X)
y

P(y’|x*,y,X) = fP(y*,le*,y, X)do

Predictive
distribution

= [ RG6x*, 0)P(Oly, X)d6

“Bayesian model averaging”. Often computationally
infeasible, but has a closed-form solution in some cases.
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Linear Regression Models

= Training data:

= Model
fo: XY

fo(x) =x"60
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Overview

= Linear regression:
Maximume-likelihood model,
Maximum-a-posteriori model,
Posterior distribution over models,
Bayesian prediction, predictive distribution,

m Linear classification (logistic regression):
Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.

=  Nonlinear models: Gaussian processes.
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Probabilistic Linear Regression

s  Assumption 1: Nature generates parameter 8" of a linear
function fy+(x) = x'0* according to p(0).

for (x;) = x; 0"

for (X;)
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Probabilistic Linear Regression

s  Assumption 1: Nature generates parameter 8" of a linear
function fy+(x) = x'0* according to p(0).
=  Assumption 2: Given inputs X, nature generates outputs y:
yi = for(X;) + €; with ;~N (€0, c2).
p(yilx;,07) = N(y;|x;0",0%)

“ for(x) =x]6°

for (xi) p(yilx:,0%) = N(y;|x] 0%, 02)

= p(y|XT,0%) = N(y|X0*, 421

ro.
:

X

= Inreality, we have y, X and want to make inferences about 0.
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Maximum Likelihood for Linear Regression

=  Maximum-likelihood (ML) model:

n
0, = argmeaxP(y|X, 0) = arg meaxl_[N(yi|xiT0,02)

i=1

)

Training instances are independent

20



Maximum Likelihood for Linear Regression

=  Maximum-likelihood (ML) model:

n
0, = arg meaxP(y|X, 0) = arg meaxl_[N(ny;rO,az)

i=1

n
1 1 2
= arg meaxl_llmexp {-m()’i — X;FB) }
1=
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Maximum Likelihood for Linear Regression

=  Maximum-likelihood (ML) model:

n
0, = arg meaxP(y|X, 0) = arg meaxl_[N(ny;rO,az)

1=1

n
1 1 2
= arg meaxl_llmexp {-m()’i — X;FB) }
1=

= Log is a monononic transformation:
arg méaxP(y|X, 0) = arg mgxlog P(y|X, 0)

= Also constant terms (constant in 8) can be dropped.
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Maximum Likelihood for Linear Regression

=  Maximum-likelihood (ML) model:

n
0, = argmeaxP(y|X, 0) = arg meaxl_[N(yi|x?0,02)

1=1

n
1 1 2
= arg meaxl_llmexp {-m()’i — X;F(-)) }
=
n

_ . TQ)?
= arg melnz:()’i — X 9) Unregularized linear
i=1

log [Te* = ¥'x f7 regression with
squared loss

= Log is a monononic transformation:
arg méaxP(y|X, 0) =arg méixlog P(y|X, 0)

= Also constant terms (constant in 8) can be dropped



Maximum Likelihood for Linear Regression

=  Maximum-likelihood (ML) model:

n
. 2
0,, = arg melnz:(yi — XEFO)

=1
Known as least-squares method in statistics.

m Setting the derivative to zero gives closed-form solution:
0, = (XTX) " XTy

= Inversion of XTX is numerically unstable.
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Maximum Likelihood for Linear Regression

=  The maximume-likelihood model is only based on the data, it is
iIndependent of any prior knowledge or domain assumptions.

= Calculating the maximum-likelihood model is numerically
unstable.

m Regularized least squares works much better in practice.
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Overview

Maximum-a-posteriori model,
Posterior distribution over models,
Bayesian prediction, predictive distribution,
m Linear classification (logistic regression):
Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.
=  Nonlinear models: Gaussian processes.
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MAP for Linear Regression

=  Maximum-a-positeriori (MAP) model:

Oy ap = arg mé;le(G|y, X) = arg max

P(y|X,0)P(6)

P(y|X)

27



MAP for Linear Regression

=  Maximum-a-positeriori (MAP) model:
P(y|X,0)P(8)
P(yIX)

Oy ap = arg méaxP(G|y, X) = arg max
= argmax P(y|X,0)P(0)

Training instances

= arg méaxlog(P(y|X, G)P(G)) are independent

n
= arg méaxz log P(y;|x;,0) + log P(0)

=1

n
= arg méaxz log N(yl- |x'l-r0, o2) + log P(0)
i=1

28



MAP for Linear Regression: Prior

= Nature generates parameter 0* of linear model
for(x) = x10* according to p(0).

= For convenience, assume p(8) = N(0/0, o;1).
p(8) = N'(8]0,0,1)

1 1 p(ﬂ)
— exp| — 0 ’
27Z_m/20m Xp[ 20_2 | | J s “_:‘

P p

o, € R controls strength of prior

29



MAP for Linear Regression

=  Maximum-a-positeriori (MAP) model:
Oy ap = argmeaxZ’-1 logN(yi|x-T0 o2) + log P(0)

— argmaxz logm 202 (y; — XTG)

=
+ log é — = ~_07To
21T 2 0. Op p

SN\

All terms that are constant in
6 can be dropped.
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MAP for Linear Regression

=  Maximum-a-positeriori (MAP) model:
0p4p = arg mGaXZ’-1 logN(yi|x-T0) + log P(0)

2
— argmaxz logm 202 (v; —x70)

=
+ log é — = ~_07To
21T 2 0. p p

| 1 , 1
= arg meanT‘z(yi - x76)" +-— 670

Op
_ N T2 O o
—argmelnz:(yi—xi 9) —?9 )
i=1 b
—

?,-regularized linear regression with
squared loss (ridge regression).
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MAP for Linear Regression

=  Maximum-a-positeriori (MAP) model:

: 2 2
Oyap = arg min Z?=1(Yi — X'ire) ~ Z_g e'e
T

= Same optimization criterion as ridge regression.

= Analytic solution (see lecture on ridge regression):

2 -1
Onap = (XTX + %I) XTy

p
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Overview

Posterior distribution over models,
Bayesian prediction, predictive distribution,
m Linear classification (logistic regression):
Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.
=  Nonlinear models: Gaussian processes.

33



Posterior for Linear Regression

= Posterior distribution of @ given y, X:

P(y|X,0)P(0 1
P(Bly,X) = “X0E2 = 2 P(yIX, 0)P(6)

34



Posterior for Linear Regression

= Posterior distribution of @ given y, X:

P(y|X,0)P(6) _

P(8ly,X) = = ~P(ylX,0)P(6)

P(y|X)

1
= ZN(y|XT9, a?I)N(6|0,02 1)

The normal distribution is the
conjugate of itself. Therefore

N(. | .,.)N(. | .,.) — N(. | .,.)
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Posterior for Linear Regression

= Posterior distribution of @ given y, X:

P(y|X,0)P(6 1
P(Bly,X) = “X0E2 = 2 P(yIX, 0)P(6)

1
= ZN(y|XT(-), a?I)N(6|0,02 1)
=N(0|6,A™ 1)

_ 2 \~1
With 8 = (XTX + %I) XTy
’ —

And A™! = 07%X"X + 0, 1.

Mean value of posterior: 0,,4p
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Example MAP solution regression

= Training data:

o B

y1:2 y2:3 y3:4

= Matrix notation (adding constant attribute):

1 2 3 0 2
X=|1 4 3 2 y=|3
1 01 2 4

37



Example MAP solution regression

2
= Compute: 0= (xTX+‘7_2 Xy

Op

==1
Il

U

Choose

Variance of prior: o, =1
Noise parameter. o =0.5

1
1
1

o B~ DN

0.7975
-0.5598
0.7543
1.1217

3
3
1

N NN O

T

1
1
1

o BB DN

3
3
1

N NN O

+0.25-

o o o B+

o o +—» O

o +—» O O

L O O O

e e

o B~ DN

R W Ww
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Example MAP solution regression

= Predictions of model 6 on the training data:

0.7975
12 30 1.9408
L= -0.5598
J=X0=|1 4 3 2 = | 3.0646
0.7543
101 2 3.7952
1.1217




Posterior and Regularized Loss Function

= MAP model:
P(y|X,0)P(8)
P(y|X)

Oy ap = arg mOaXP(G|y, X) = arg max
= arg meaxP(yIX, 0)P(0)
= arg meaxlog P(y|X,0) + log P(0)

n
= arg meaxz: log P(y;|x;,0) + log P(0)
i=1

n
2
o
= arg minZ(yi - xl-TE))2 +—070
° i=1 Op

A/

Likelihood = loss function Prior = regularizer




Sequential Learning

= Training examples arrive sequentially.
= Each training example (x;, y;) changes prior p;_;(0) into
posterior p;_,(0]y;, x;) which becomes the new prior p;(0)

1
P(8ly,X) =~ Py(8)P(y[X, 0)
n
1
= Fo(6) I_IP(Yilxi» 0)
. i=1
= —Py(0)P(y1|x1,0) P(y21x;,0) P(y3|x3,0) ... P(yn Xy, 0)

YA ;
P1(0) '
P,(0)

—

P3(0)

41



Example: Sequential Learning

[from Chris Bishop, Pattern Recognition and Machine Learning]

fo(x) = 0y + 8,x (one-dimensional regression)

Sequential update:  P,(0)

Py ()

Y

Sample from Py(0)
1

42



Example: Sequential Learning

fo(x) = 0y + 8,x (one-dimensional regression)

Sequential update:  P,(0)

Likelihood P(y,|xy, 0) Py (0) Instance x;, y;

1 ]

Yy

O !




Example: Sequential Learning

fo(x) = 0y + 8,x (one-dimensional regression)

Sequential update:  P;(0) o Py(0)P(y,|x1,0)

Likelihood P(y;|x,, 0) P1(8) Sample from P; (0)

1 | 1

Y

O I
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Example: Sequential Learning

1

fo(x) = 0y + 8,x (one-dimensional regression)

P,(0) «x P;(0)P(y2]x2,0)

Sequential update:

1

P,(0)

Sample from P,(0)
1 .

Y

0f O




Example: Sequential Learning

fo(x) = 0y + 8,x (one-dimensional regression)

Sequential update:  P,(0) «< P,_1(0)P(y,|x,, 0)

Likelihood P (y,,|x,,, 0) P, (9) Sample from P,(0)
1

6,
0

1

o1
0




Learning and Prediction

= So far, we have always separated learning from prediction.
= Learning:

0* = arg meax}?(y, X,0) + Q(0)

s Prediction:

y' = for(X7)

= Forinstance, in MAP linear regression, learning is
Omap = argmgle(9|y,X).
= And prediction is

x _ nT *
y' = OpupX.
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Learning and Prediction

= So far, we have always separated learning from prediction.
= And there are good reasons to do this:

Learning can require processing massive amounts of
training data which can take a long time.

Predictions may have to be made in real time.

= However, sometimes, when relatively few data are available
and an accurate prediction is worth waiting for, one can
directly search for the best possible prediction:

y* = argmax P(y|x",y, X)
y

Most likely y* for new input x* given training data y, X.
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Overview

Bayesian prediction, predictive distribution,
m Linear classification (logistic regression):
Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.
=  Nonlinear models: Gaussian processes.

49



Bayes-Optimal Prediction

= Bayes-optimal decision: most likely value y* for new input x*

y* =argmaxP(y|x",y, X)
y

= Predictive distribution for new input x* given training data:
Pylx",y,X) = [ P(y,8]x",y,X)d®  ——7 Sum rule
= [ P(y|0,x%,y,X)P(0|x*,y,X)dO
§ Product rule

= [ P(y|0,x*)P(8]y,X)d0

N\

Bayesian model
averaging

e~

Independence assumptions from
model data generation process

» Bayes-optimal decision is made by a weighted sum over all
values of the model parameters.

= In general, there is no single model 8* in the model space that
always makes the Bayes-optimal decision.
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Bayes-Optimal Prediction

s Bayes-optimal decision is made by a weighted sum over all
model parameters:

P(ylx*,y,X) = | P(y|x*,8)P(8ly, X)d®

= The prediction of the MAP model is only the prediction made
by the single most likely model 0, 4p.

Predictive distribution P(y|x*, Op4p).
Most likely prediction fy,, ,,(X*) = argmax P(y|X", Op4p).
y

= The MAP model 0,,,p IS an approximaton of this weighted
sum by its element with the highest weight.
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Bayes-Optimal Prediction

s Bayes-optimal decision is made by a weighted sum over all
model parameters:

P(ylx*,y,X) = | P(y|x*,8)P(8ly, X)d®

= Integration over the space of all model parameters is not
generally possible.

s In some cases, there is a closed-form solution.

= |n other cases, approximate numerical integration may be
possible.
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Predictive Distribution for Linear Regression

= Predictive distribution for linear regression
P(ylx*y,X) = [ P(y|x*,8)P(8ly,X)d®
= [ N(y|x*,0)N(8]6,A71)d0
= N(y|07x*, 02 + x* A~ 1x*")
_ 2 \1
With 8 = (xTx + %I) XTy
p
And A™! = 672X"X + 0, °I.
m Bayes-optimal prediction:

y* = argmax P(y|x*,y,X) = 0'x*
y

53



Predictive Distribution: Confidence Band

= Bayesian regression not only yields prediction y =x'0, buta
distribution over y und therefore a confidence band.

¢ [N(y|XT6,02+XTA1X)

output, y

= é,” i ;
’ -5 / 0 5
input, x

[ e.g. 95% confidence
54




Overview

m Linear classification (logistic regression):

Predictive distribution,
Maximume-likelihood model,
Maximum-a-posteriori model,
Bayesian Prediction.

=  Nonlinear models: Gaussian processes.
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Linear Classification

= Training data:

s Decision function:
fo(x) =x'0
= Predictive distribution
xlm u‘:
s ) P(y]x 8) = 0(x"0)

x . = Linear classifier:
nm

b

Y (X) = argmax P(y|x, 0)
y

Yo- ”&H ®
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Linear Classification: Predictive Distribution

= For binary classification, y € {—1,+1}
= Predictive distribution given parameters 0 of linear model:

P(y = +1|x,0) = o(x70) = ! =

14+e7X"0
P(y=-1|x,0) =1—-P(y = +1[x,0)
= Sigmoid function maps [—o, +oo] — [0,1].

1

p(y=1|x,0)
0.5

0
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Logistic Regression

= For binary classification, y € {—1, +1}
= Predictive distribution given parameters 0 of linear model:

P(y = +1|x,0) = o(x70) = !

1+e7X'8
1 1
Ply=-11x8) =1~ 1+e X710  14ex'0

= Written jointly for both classes:
_ Ta) — 1
P(y|x,0) = a(yx G) = o
s Classification function:
Vo (X) = argmax P(y|x, 0)
y

To

m Called “logistic regression” even though it is a classification
model.



Logistic Regression

Decision boundary: P(y = +1|x,0) = P(y = —1|x,0) = 0.5.
0.5 = J(XTG) =

S 1=ex"8

T

& 0=x'0

Decision boundary is a hyperplane in input space.

x'0=0

A Y

N

1

1+ ex'0

p(y =+1[x,0)

59



Logistic Regression

0,

For multi-class classification: 8 = | :
0

Generalize sigmoid function to softmax function:

eXTey ]
P(y|x,0) = T Normalizer ensures that
X y/
Ly € ZP(ylx, 0) = 1
Classification function: >

Yo (X) = argmaxP(y|x, 0)
y

Called multi-class “logistic regression” even though it is a
classification model.
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Overview

m Basic concepts of Bayesian learning
= Linear regression:
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
+ Posterior distribution over models,
¢ Bayesian prediction, predictive distribution,
s Linear classification (logistic regression):
+ Predictive distribution,
+ Maximume-likelihood model,
+ Maximum-a-posteriori model,
+ Bayesian Prediction.
= Nonlinear models: Gaussian processes.
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Logistic Regression: ML Model

Maximum-likelihood model:
0, = arg méaxP(y X, 0)
n

1
= argmax _[
0 1 ] 1+ e—in'iI‘G
i=

n

_ 1
= argmeln; —log T

n
— 1 _yl'x’ire
argmemz log (1 + e )

=1
No analytic solution; numeric optimization, for instance, using
(stochastic) gradient descent.
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Logistic Regression: ML Model

s Maximum-likelihood model:
Oy = argmin Y, log (1 + e‘y”"ire)
s Gradient:

%Z’{‘zl log (1 + e‘yixrire)
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Overview

m Basic concepts of Bayesian learning
s Linear regression:
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
+ Posterior distribution over models,
¢ Bayesian prediction, predictive distribution,
s Linear classification (logistic regression):
+ Predictive distribution,
¢ Maximum-likelihood model,
+ Maximum-a-posteriori model,
+ Bayesian Prediction.
= Nonlinear models: Gaussian processes.
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Logistic Regression: MAP Model

= Maximum-a-posteriori model with prior P(8) = N(0|0, ¢*I):
0)4p = arg mgxP(le, 0)P(0)

n

1
= 2
argmax ‘ ‘ [ oyiTe N(0]0,5°1)

=1
n

1
_ - E _ _ 2
= argmin 2, log PR log N(0]0,5°1)

n
T 1
— : —YViXi 0 T
argmelnzl: log(l +e ) + P 0'0
1=

= No analytic solution; numeric optimization, for instance, using
(stochastic) gradient descent.
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Logistic Regression: MAP Model

= Maximum-a-posteriori model with prior P(8) = N(0|0, ¢*I):

L _9To

T
Opap = argmein Yieqlog (1 + e7YiXi 9) +
p

s Gradient:
0 P |
50 (Z?:llog (1 + e ViXi 9) + %9%)

1
= y;X; (1 — a(yixrirﬂ)) + T‘ZG
P
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Overview

m Basic concepts of Bayesian learning
s Linear regression:
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
+ Posterior distribution over models,
¢ Bayesian prediction, predictive distribution,
s Linear classification (logistic regression):
+ Predictive distribution,
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
+ Bayesian Prediction.
= Nonlinear models: Gaussian processes.
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Bayes-Optimal Prediction for Classification

= Predictive distribution given the data
P(ylx*,y,X) = [ P(y16,x*)P(8]y,X)d0

1
= —N(0]0,521)de
14+eyx 8
= No closed-form solution for logistic regression.
s Possible to approximate by sampling from the posterior.

s Standard approximation: use only MAP model instead of
Integrating over model space.
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Overview

m Basic concepts of Bayesian learning
s Linear regression:
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
o Posterior distribution over models,
¢ Bayesian prediction, predictive distribution,
s Linear classification (logistic regression):
+ Predictive distribution,
¢ Maximum-likelihood model,
¢ Maximum-a-posteriori model,
¢ Bayesian Prediction.
= Nonlinear models: Gaussian processes.

69



Nonlinear Regression

= Limitation of model discussed so far: only linear
dependency between x and fy(x).

Linear model Nonlinear model

o ——
t
[e]
- o o o 4
o/
0 . 1

|

I N T S O R

= Now: nonlinear models.
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Feature Mappings and Kernels

Use mapping ¢ to embed instances x € X in higher-
dimensional feature space.

Find linear model in higher-dimensional space, corresponds to
non-linear model in input space X.

Representer theorem:
Model fo-(x) = 0* (%)
Has a representation f,-(x) = Yj-, @; Sb(xl-)Tgb(xl
=k(X;,X)
Feature mapping ¢ (x) does not have to be computed; only
kernel function k(x;,x) is evaluated.

Feature mapping ¢ (x) can therefore be high- or even infinite-
dimensional.
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Generalized Linear Regression e vmensins case

s  Assumption 1: Nature generates parameter 8" of a linear
function fy-(x) = ¢(x)"0* according to p(8) = N(0]0, g5 1).
= Assumption 2: Inputs are X with feature representation ®; line
i of & contains row vector ¢(x;)T. Nature generates outputs y:
y; = for(X;) + €; with ;~N (€0, 62).
p(yilx;,0) = N(y;|9p(x;)'0%,0%)

“ for(x) = p(x)Te"

for (xi) p(yilx;, 0% = N(y;|p(x,)70% 52)

= p(y|XT, 0*) = N(y|®0*, %)

ro.
:
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Generalized Linear Regression

s Generalized linear model:

fo(x) = p(x)"0
y = ®0

= Parameter 0 governed by normal distribution N(0]0, agl).

= Therefore output vector y is also normally distributed.
Mean value El|y| = E[®0] = ®E[O] = 0.
Covariance E[yy'] = ®E[00"]®" = 6 ®P" = 07K

With KU — ¢(Xl')T¢(Xj) = k(Xi,Xj).

[ — d(x1) -1 | |
= Remember: ®dT = d(xy) ¢ Pp(xy,)

| T ¢(Xn) 1L | |
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Generalized Linear Regression eeeicass

= Data generation assumptions:
Given inputs X, nature generates target values y ~
N(¥10, 05K).

= Then, nature generates observations y; = y; + €; with
noise €;~N(e|0,0?).

m Bayesdian inference: determine predictive distribution
P(y*|x*,y, X) for new test instance.
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Reminder: Linear Regression

m Bayes-optimal prediction:
y* = argmax P(y|x*,y,X) = 0Tx*
y
2

-1
With © = (xTx + %I) XTy.

p

= Number of parameters 6; = number of attributes in x.
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Generalized Linear Regression

= Mean value of predictive distribution P(y*|x*,y, X) has the form
y* = Xizq @ik (X, X")

- N ;2\l
Witha = | PD +—2 y = K+?I y.

Op p

=  Number of parameters a; = number of training instances.
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Example nonlinear regression

= Example for nonlinear regression
Generating nonlinear data by

y =sin(2zX) + ¢ g~ N(g|0,0°), xe[0,1]
s  Nonlinear kernel

k(x,x") = exp(—0|x — x'|)

= How does the predictive distribution and the posterior over
models look like?
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Predictive distribution

[@ | &ata point

, i | N=2
N=1 f

0 |y =sin(2zx)

| N=25

/8



Models sampled from posterior

N

=2

N=25
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Summary

= Linear regression:
Maximum-likelihood model arg maxg P(y |X, 0),
Maximum-a-posteriori model arg max P(0ly, X),

Posterior distribution over models P(0|y, X),

Bayesian prediction, predictive distribution
argmax,, P(y*[x",y, X).

m Linear classification (logistic regression):
Predictive distribution P(y*|x*, 0),
Maximum-likelihood model arg max P(y|X, 0),

Maximume-a-posteriori model arg max P(0)y, X),
Bayesian Prediction arg max P(y|x",y, X).
y

=  Nonlinear models: Gaussian processes.
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